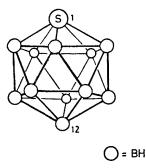
Synthesis and Properties of Thia-closo-dodecaborane(11)

By JAROMÍR PLEŠEK and STANISLAV HEŘMÁNEK


(Institute of Inorganic Chemistry, Czechoslovak Academy of Sciences, Rež near Prague)

Summary The preparation of $\rm SB_{11}H_{11}$ and its bromination to 12-Br-1-SB₁₁H₁₀ are described; the n.m.r. antipodal effect of the S(δ +) atom on the chemical shift of the opposite B(12) atom is shown.

ALTHOUGH 2-phenyl- and 2,4-diphenyl-1-thia-closo-dodecaboranes(11) have been synthesized since the discovery of thiaborane compounds,¹ the parent compound has not yet been described. We have now synthesised thia-closododecaborane(11) (I) as in equation (1).

7-SB₁₀H₁₂ + Et₃N·BH₃
$$\xrightarrow{120-190^{\circ}}$$
 SB₁₁H₁₁
(I) 38%
+ SB₁₀H₁₁⁻NHEt₃ + Et₃N (1)
(II) ca. 50%

Compound (I) was isolated from the crude sublimate by column chromatography on silica gel with hexane as eluant, followed by sublimation at 90° and 10^{-2} Torr. From the triethylammonium salt (II) the starting compound can be recovered almost quantitatively.

The colourless camphor smelling 1-thia-closo-dodecaborane(11), sublimes (>240°) and is readily soluble in organic solvents. The chromatographic behaviour on silica gel[†] which parallels the dipole moment values of closoderivatives² shows that (I) $\lceil R_F 0.40$ (hexane), 0.60 (benzenehexane 1:2 has a much smaller dipole moment than 1,2dicarba-closo-dodecaborane(12) [4.5 D; $R_{\rm F}$ 0.08 (hexane), 0.30 (benzene-hexane 1:2)] and is comparable with 1,7dicarba-closo-dodecaborane(12) [2.8 D; R_F 0.41 (hexane), 0.60 (benzene-hexane 1:2)].

The mass spectrum of ${}^{32}S^{11}B_{11}{}^{1}H_{11}$ gives M^+ 164.16109 (calcd. 164.16 056). The i.r. spectrum is relatively simple and shows significant $B-H_t$ absorption bands at 2580 and 2620 cm⁻¹. The u.v. spectrum shows λ_1 216 nm ($\epsilon = 1095$) and λ_2 219 nm (sh, $\epsilon = 967$). The ¹¹B n.m.r. spectrum has three doublets of relative intensities 1:5:5, centred at -18.7; +3.7 and 5.7 p.p.m. (relative to BF₃·OEt₂), and supports the proposed structure of (I). The values compare well with those of 2-PhB₁₁H₁₀S [-18.5(1), -8.3(1, singlet);+3.9(8)].¹

The bromination of (I) in methylene chloride in the presence of Al powder gave 12-Br-1-SB₁₁H₁₀ (90%), m.p. 215-217°, M^+ 244. The position of the bromine atom follows from the ¹¹B n.m.r. spectrum which has a singlet of intensity 1 at $-16\cdot1$ ⁺ and two doublets, each of intensity 5 at +3.9 and +7.0 p.p.m. Bromination indicates that the B(12) atom is the most negative B atom in the molecule.

The occurence of the ¹¹B signal of the most negative B(12) atom in the lowest field of the n.m.r. spectrum is not surprising in the light of our finding that the ¹¹B chemical shift of a skeletal atom does not depend on its electrondensity but is mainly influenced by the electron-density of the atom located on the opposite site of the molecule; the δ + charged atom shifts the signal of an antipodal atom to lower field while the δ - charged atom shifts it to higher field (compared with the non-charged atom).³ This hypothesis is in accord with compound (I) where the B(12)atom is influenced significantly by the antipodal, positively charged S-atom and behaves as a least-shielded atom, the signal of which occurs in the lowest field of the spectrum. A similar, but a much more intense effect of the $S(\delta +)$ atom on the antipodal B(10) atom was observed with the 1-SB₉H₉homologue ($\delta_{B(10)} = -74.5 \text{ p.p.m.}^4$). The rate of the antipodal effect thus depends not only on the electrondensity but also on the shape of the closo-skeleton.

We thank Drs. F. Hanousek and F. Haruda for i.r. and u.v. spectra, Dr. V. Kubelka and Dr. L. Dolejš for mass spectra, and Dr. P.Trška for n.m.r. spectra.

(Received, 9th December 1974; Com. 1489.)

† Precoated silica gel sheet Silufol, starch as binder (Kavalier n.p. Votice, Czechoslovakia); detection-I₂ vapour followed by AgNO₃ spray.

‡ In this case, the substitution of a single terminal hydrogen by the bromine atom causes, surprisingly, a shift to higher field.

¹W. R. Hertler, F. Klanberg, and L. Muetterties, Inorg. Chem., 1967, 6, 1696.

² J. Plešek, S. Heřmánek, and V. Gregor, J. Chromatog., 1972, 74, 149; V. Gregor, V. Jehlicka, and J. Stuchlik, Coll. Czech. Chem. Comm., 1972, 37, 3859.

S. Heřmánek, J. Plešek, and B. Štíbr, 2nd International Meeting on Boron Compounds, 25-29th March, 1974, Leeds, Abs. No. 38. S. Heřmánek, J. Plešek, and B. Štíbr, N.m.r. Symposium, 18th—21st November, 1974, Prague, Czechoslovakia, Abs. No. 11. ⁴ W. R. Pretzer and R. W. Rudolph, J. Amer. Chem. Soc., 1973, 95, 931.